Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Pierre Letouzey
natded
Commits
3d63606d
Commit
3d63606d
authored
Jul 16, 2020
by
Samuel Ben Hamou
Browse files
Fin preuve emptyset.
parent
13ff6682
Changes
1
Hide whitespace changes
Inline
Side-by-side
ZF.v
View file @
3d63606d
...
@@ -4,7 +4,7 @@
...
@@ -4,7 +4,7 @@
This
file
is
released
under
the
CC0
License
,
see
the
LICENSE
file
*
)
This
file
is
released
under
the
CC0
License
,
see
the
LICENSE
file
*
)
Require
Import
ROmega
.
Require
Import
ROmega
.
Require
Import
Defs
NameProofs
Mix
Meta
Theories
PreModels
Models
.
Require
Import
Defs
NameProofs
Mix
Meta
Theories
PreModels
Models
Peano
.
Import
ListNotations
.
Import
ListNotations
.
Local
Open
Scope
bool_scope
.
Local
Open
Scope
bool_scope
.
Local
Open
Scope
eqb_scope
.
Local
Open
Scope
eqb_scope
.
...
@@ -215,8 +215,6 @@ Definition ZF :=
...
@@ -215,8 +215,6 @@ Definition ZF :=
Import
ZFAx
.
Import
ZFAx
.
Ltac
thm
:=
unfold
IsTheorem
;
split
;
[
unfold
Wf
;
split
;
[
auto
|
split
;
auto
]
|
].
Lemma
emptyset
:
IsTheorem
Intuiti
ZF
(
∃∀
~
(#
0
∈
#
1
)).
Lemma
emptyset
:
IsTheorem
Intuiti
ZF
(
∃∀
~
(#
0
∈
#
1
)).
Proof
.
Proof
.
thm
.
thm
.
...
@@ -225,8 +223,25 @@ Proof.
...
@@ -225,8 +223,25 @@ Proof.
-
simpl
.
rewrite
Forall_forall
.
intros
.
destruct
H
.
-
simpl
.
rewrite
Forall_forall
.
intros
.
destruct
H
.
+
rewrite
<-
H
.
unfold
IsAx
.
left
.
compute
;
intuition
.
+
rewrite
<-
H
.
unfold
IsAx
.
left
.
compute
;
intuition
.
+
inversion
H
.
+
inversion
H
.
-
apply
R_Ex_e
with
(
A
:=
infinity
)
(
x
:=
"a"
).
-
apply
R_Ex_e
with
(
A
:=
(
∃
(#
0
∈
#
1
/
\
∀
~
(#
0
∈
#
1
))
/
\
∀
(#
0
∈
#
1
->
(
∃
(#
0
∈
#
2
/
\
(
∀
(#
0
∈
#
1
<->
#
0
=
#
2
\
/
#
0
∈
#
2
)))))))
(
x
:=
"a"
).
+
intro
.
cbn
in
H
.
+
calc
.
+
apply
R_Ax
;
auto
.
unfold
infinity
.
intuition
.
+
cbn
.
apply
R_Ex_e
with
(
A
:=
#
0
∈
FVar
"a"
/
\
(
∀
~
#
0
∈
#
1
))
(
x
:=
"x"
).
*
calc
.
*
apply
R
'_
Ex_e
with
(
x
:=
"y"
);
[
calc
|
].
cbn
.
set
(
rem
:=
∀
_
->
∃
_
).
apply
R_Ex_i
with
(
t
:=
FVar
"y"
).
cbn
.
apply
R_And_e1
with
(
B
:=
rem
).
apply
R_Ax
.
apply
in_eq
.
*
cbn
.
apply
R_Ex_i
with
(
t
:=
FVar
"x"
).
cbn
.
apply
R_And_e2
with
(
A
:=
FVar
"x"
∈
FVar
"a"
).
apply
R_Ax
.
apply
in_eq
.
Qed
.
Lemma
singleton
:
IsTheorem
Intuiti
ZF
(
∀∃∀
(#
0
∈
#
1
<->
#
0
=
#
2
)).
Lemma
singleton
:
IsTheorem
Intuiti
ZF
(
∀∃∀
(#
0
∈
#
1
<->
#
0
=
#
2
)).
Admitted
.
Admitted
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment