Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Pierre Letouzey
natded
Commits
506d1dde
Commit
506d1dde
authored
Jun 06, 2020
by
Samuel Ben Hamou
Browse files
Suite des preuves dans NK1 et NJ1. Lemmes d'affaiblissement et loi de De Morgan à démontrer.
parent
54c1d687
Changes
1
Hide whitespace changes
Inline
Side-by-side
Mix.v
View file @
506d1dde
...
...
@@ -907,6 +907,83 @@ Proof.
- intros (d & Hd & <-). now apply Valid_Pr.
Qed.
(* A few examples of proofs in NJ1 and NK1. *)
Lemma ex1 f1 f2 : Provable Intuiti ([] ⊢ (f1 /\ f2) -> (f1 \/ f2)).
Proof.
apply Provable_alt.
apply R_Imp_i.
apply R_Or_i1.
apply R_And_e1 with (B := f2).
apply R_Ax.
apply in_eq.
Qed.
Lemma ex2 f1 f2 f3 : Provable Intuiti ([] ⊢ (f1 -> f2 -> f3) <-> (f1 /\ f2 -> f3)).
Proof.
apply Provable_alt.
apply R_And_i.
+ apply R_Imp_i.
apply R_Imp_i.
apply R_Imp_e with (A := f2).
- apply R_Imp_e with (A := f1).
* apply R_Ax. apply in_cons. apply in_eq.
* apply R_And_e1 with (B := f2). apply R_Ax. apply in_eq.
- apply R_And_e2 with (A := f1). apply R_Ax. apply in_eq.
+ apply R_Imp_i.
apply R_Imp_i.
apply R_Imp_i.
apply R_Imp_e with (A := (f1 /\ f2)%form).
- apply R_Ax. apply in_cons. apply in_cons. apply in_eq.
- apply R_And_i; apply R_Ax.
* apply in_cons. apply in_eq.
* apply in_eq.
Qed.
Lemma Weakening f1 Γ f2 lg : Pr lg (Γ ⊢ f1) -> Pr lg (f2::Γ ⊢ f1).
Admitted.
Lemma RAA f1 Γ : Pr Classic (Γ ⊢ ~~f1) -> Pr Classic (Γ ⊢ f1).
Proof.
intro.
apply R_Absu.
+ reflexivity.
+ apply R_Not_e with (A := (~ f1)%form).
- apply R_Ax. apply in_eq.
- apply Weakening. exact H.
Qed.
Lemma DeMorgan f1 f2 Γ : Pr Classic (Γ ⊢ ~(~f1 /\ f2)) -> Pr Classic (Γ ⊢ ~~(f1 \/ ~f2)).
Proof.
intro.
apply R_Not_i.
apply R_Not_e with (A := (~f1 /\ f2)%form).
+ apply RAA with (f1 := (~f1 /\ f2)%form).
apply R_Not_i.
apply R_Not_e with (A := (~~f1\/~f2)%form).
- apply R_Or_i1.
apply R_Not_i.
apply R_Not_e with (A := (~~f1\/~f2)%form).
* apply R_Or_i2. apply R_Not_i. apply R_Not_e with (A := (~f1 /\ f2)%form).
++ apply R_And_i.
-- apply R_Ax. apply in_cons. apply in_eq.
-- apply R_Ax. apply in_eq.
++ apply R_Ax. apply in_cons. apply in_cons. apply in_eq.
*
Lemma ExcludedMiddle f1 : Provable Classic ([] ⊢ f1 \/ ~f1).
Proof.
apply Provable_alt.
apply RAA.
apply DeMorgan with (f2 := f1) (Γ := []).
apply R_Not_i.
apply R_Not_e with (A := f1).
+ apply R_And_e2 with (A := (~f1)%form). apply R_Ax. apply in_eq.
+ apply R_And_e1 with (B := f1). apply R_Ax. apply in_eq.
Qed.
(* Some usefull statements. *)
Lemma Pr_intuit_classic s : Pr Intuiti s -> Pr Classic s.
Proof.
induction 1; eauto 2.
...
...
@@ -930,4 +1007,4 @@ Qed.
Lemma any_classic d lg : Valid lg d -> Valid Classic d.
Proof.
destruct lg. trivial. apply intuit_classic.
Qed.
Qed.
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment