Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Pierre Letouzey
natded
Commits
8ceb9473
Commit
8ceb9473
authored
Jul 19, 2020
by
Samuel Ben Hamou
Browse files
Fin des preuves de singleton et WfAx (améliorée).
parent
8ebb63b7
Changes
1
Hide whitespace changes
Inline
Side-by-side
ZF.v
View file @
8ceb9473
...
...
@@ -163,8 +163,7 @@ Proof.
easy
.
+
red
.
rewrite
nForall_level
.
cbn
-
[
Nat
.
max
].
rewrite
!
pred_max
.
simpl
.
rewrite
!
pred_max
.
simpl
.
assert
(
H
:=
level_lift_form_above
B
1
).
apply
Nat
.
sub_0_le
.
repeat
apply
Nat
.
max_lub
;
omega
with
*
.
...
...
@@ -178,19 +177,21 @@ Proof.
+
rewrite
nForall_check
.
cbn
.
rewrite
!
check_lift_form_above
,
HC
.
easy
.
(
*
todo
*
)
+
red
.
rewrite
nForall_level
.
repeat
rewrite
!
aux2
,
!
aux
'
.
+
red
.
rewrite
nForall_level
.
cbn
-
[
Nat
.
max
].
simpl
(
Nat
.
max
1
_
)
.
rewrite
!
pred_max
.
simpl
.
assert
(
H
:=
level_lift_form_above
C
1
).
assert
(
H
'
:=
level_lift_form_above
C
2
).
romega
with
*
.
+
apply
nForall_fclosed
.
red
.
unfold
Names
.
Empty
.
intro
a
.
intro
.
rewrite
!
aux2
'
in
H
.
cbn
-
[
Names
.
union
]
in
H
.
rewrite
!
fvars_lift_form_above
in
H
.
unfold
FClosed
in
HC
'
.
unfold
Names
.
Empty
in
HC
'
.
destruct
HC
'
with
(
a
:=
a
).
namedec
.
Qed
.
apply
Nat
.
sub_0_le
.
repeat
apply
Nat
.
max_lub
;
omega
with
*
.
+
apply
nForall_fclosed
.
red
.
apply
->
Names
.
is_empty_spec
.
cbn
-
[
Names
.
union
].
rewrite
fvars_lift_form_above
.
apply
empty_alt
in
HC
'
.
assert
(
H
:=
fvars_lift_form_above
C
2
).
rewrite
H
,
!
HC
'
.
reflexivity
.
Qed
.
End
ZFAx
.
...
...
@@ -241,6 +242,17 @@ Proof.
+
cbn
.
fold
x
.
set
(
y
:=
FVar
"y"
).
reIff
.
apply
R_Ex_i
with
(
t
:=
y
);
cbn
;
reIff
.
fold
x
;
fold
y
.
apply
R_All_i
with
(
x
:=
"z"
);
[
calc
|
].
set
(
z
:=
FVar
"z"
).
apply
R
'_
All_e
with
(
t
:=
z
);
auto
.
cbn
.
fold
x
.
fold
y
.
fold
z
.
apply
R_And_i
;
apply
R
'_
And_e
.
*
apply
R_Imp_i
.
apply
R_Or_e
with
(
A
:=
z
=
x
)
(
B
:=
z
=
x
);
[
|
apply
R_Ax
;
calc
|
apply
R_Ax
;
calc
].
apply
R_Imp_e
with
(
A
:=
z
∈
y
);
apply
R_Ax
;
calc
.
*
apply
R_Imp_i
.
apply
R_Imp_e
with
(
A
:=
z
=
x
\
/
z
=
x
);
[
apply
R_Ax
;
calc
|
].
apply
R_Or_i1
;
apply
R_Ax
;
calc
.
Qed
.
Lemma
union
:
IsTheorem
Intuiti
ZF
(
∀∀∃∀
(#
0
∈
#
1
<->
#
0
∈
#
2
\
/
#
0
∈
#
3
)).
Admitted
.
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment