Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Pierre Letouzey
natded
Commits
bd9241dc
Commit
bd9241dc
authored
Jul 27, 2020
by
Samuel Ben Hamou
Browse files
Mini modifs Peano (retours à la ligne pour plus de lisibilité)
parent
73d69bcc
Changes
1
Hide whitespace changes
Inline
Side-by-side
Peano.v
View file @
bd9241dc
...
...
@@ -99,7 +99,9 @@ Definition PeanoTheory :=
Import
PeanoAx
.
Lemma
Symmetry
:
forall
logic
A
B
Γ
,
BClosed
A
->
In
ax2
Γ
->
Pr
logic
(
Γ
⊢
A
=
B
)
->
Pr
logic
(
Γ
⊢
B
=
A
).
Lemma
Symmetry
:
forall
logic
A
B
Γ
,
BClosed
A
->
In
ax2
Γ
->
Pr
logic
(
Γ
⊢
A
=
B
)
->
Pr
logic
(
Γ
⊢
B
=
A
).
Proof
.
intros
.
apply
R_Imp_e
with
(
A
:=
A
=
B
);
[
|
assumption
].
...
...
@@ -115,7 +117,9 @@ Proof.
exact
AX2
.
Qed
.
Lemma
Transitivity
:
forall
logic
A
B
C
Γ
,
BClosed
A
->
BClosed
B
->
In
ax3
Γ
->
Pr
logic
(
Γ
⊢
A
=
B
)
->
Pr
logic
(
Γ
⊢
B
=
C
)
->
Pr
logic
(
Γ
⊢
A
=
C
).
Lemma
Transitivity
:
forall
logic
A
B
C
Γ
,
BClosed
A
->
BClosed
B
->
In
ax3
Γ
->
Pr
logic
(
Γ
⊢
A
=
B
)
->
Pr
logic
(
Γ
⊢
B
=
C
)
->
Pr
logic
(
Γ
⊢
A
=
C
).
Proof
.
intros
.
apply
R_Imp_e
with
(
A
:=
A
=
B
/
\
B
=
C
);
[
|
apply
R_And_i
;
assumption
].
...
...
@@ -138,7 +142,9 @@ Proof.
assumption
.
Qed
.
Lemma
Hereditarity
:
forall
logic
A
B
Γ
,
BClosed
A
->
In
ax4
Γ
->
Pr
logic
(
Γ
⊢
A
=
B
)
->
Pr
logic
(
Γ
⊢
Succ
A
=
Succ
B
).
Lemma
Hereditarity
:
forall
logic
A
B
Γ
,
BClosed
A
->
In
ax4
Γ
->
Pr
logic
(
Γ
⊢
A
=
B
)
->
Pr
logic
(
Γ
⊢
Succ
A
=
Succ
B
).
Proof
.
intros
.
apply
R_Imp_e
with
(
A
:=
A
=
B
);
[
|
assumption
].
...
...
@@ -155,7 +161,9 @@ Proof.
assumption
.
Qed
.
Lemma
AntiHereditarity
:
forall
logic
A
B
Γ
,
BClosed
A
->
In
ax13
Γ
->
Pr
logic
(
Γ
⊢
Succ
A
=
Succ
B
)
->
Pr
logic
(
Γ
⊢
A
=
B
).
Lemma
AntiHereditarity
:
forall
logic
A
B
Γ
,
BClosed
A
->
In
ax13
Γ
->
Pr
logic
(
Γ
⊢
Succ
A
=
Succ
B
)
->
Pr
logic
(
Γ
⊢
A
=
B
).
Proof
.
intros
.
apply
R_Imp_e
with
(
A
:=
Succ
A
=
Succ
B
);
[
|
assumption
].
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment