@@ -86,10 +86,10 @@ Let $\varphi \equiv x < y: \hls{}(x, y; 3)$ and $s$ be a store such that $s(x)=
The following lemma (proved in the appendix) states that
the effective upper bounds of chunks in heap lists atoms of $\varphi$
with respect to stacks %\mihaela{r3: not clear}
can be captured by an{\EPbA} formula.
can be captured by a {\qfpa} formula.
\begin{lemma}\label{lem-eub}
For an {\slah} formula $\varphi\equiv\Pi: \hls{}(t'_1, t'_2; t'_3)$, a formula $\xi_{eub,\varphi}(z)$ can be constructed in linear time such that for every store $s$ satisfying $s \models\abs(\varphi)$, we have $s[z \gets\eub_\varphi(s)]\models\xi_{eub,\varphi}(z)$.
For an {\slah} formula $\varphi\equiv\Pi: \hls{}(t'_1, t'_2; t'_3)$, a {\qfpa} formula $\xi_{eub,\varphi}(z)$ can be constructed in linear time such that for every store $s$ satisfying $s \models\abs(\varphi)$, we have $s[z \gets\eub_\varphi(s)]\models\xi_{eub,\varphi}(z)$.
\end{lemma}
The following lemma (proof in the appendix) provides the correct test used
...
...
@@ -101,10 +101,11 @@ Then $\varphi \models_\preceq \psi$ iff
$C_\preceq\wedge\abs(\varphi)\models\forall z.\ \xi_{eub, \varphi}(z)\rightarrow z \le t_3$.
\end{lemma}
From Lemma~\ref{lem-hls-hls}, it follows that the entailment of
From Lemma~\ref{lem-hls-hls}, it follows that $\varphi\equiv\Pi: \hls{}(t'_1, t'_2; t'_3)\models_\preceq\hls{}(t_1, t_2; t_3)$ is invalid iff $C_\preceq\wedge\abs(\varphi)\wedge\exists z.\ \xi_{eub, \varphi}(z)\wedge\neg z \le t_3$ is satisfiable, which is an {\EPbA} formula. Therefore, this special case of the ordered entailment problem is in coNP.
\medskip
%\vspace{-4mm}
\subsubsection{At least two atoms in the antecedent:} Recall that
\noindent{\bfAt least two atoms in the antecedent:} Recall that