Commit 1a5a10f0 by ehilin02

### section 5.2

parent ed1f4619
 ... ... @@ -6,7 +6,7 @@ Using the arguments similar to the one given for the case $n=1$, we simplify $\varphi\models_\preceq \psi$ with $\varphi \equiv \Pi: a_1 \sepc \cdots \sepc a_m$ and $\psi \equiv \Pi': b_1 \sepc \cdots \sepc b_n$ to: $\psi \equiv \Pi': b_1 \sepc \cdots \sepc b_n$ to % \begin{align*} C_\preceq \land \Pi: a_1 \sepc \cdots \sepc a_m \models_\preceq b_1\sepc \cdots \sepc b_n. ... ...
 ... ... @@ -191,7 +191,7 @@ a case analysis on the form of the first atom of the antecedent, $a_1$, follows. \begin{align*} {\sf Ufld}_{x', x''}(\hls{}(t''_1, t''_2; t''_3)) \triangleq\ & \hls{}(t''_1, x'; t''_3) \sepc x' \pto x''- x' \sepc \\ & \blk(x'+1, x'') \sepc \hls{}(x'', t''_2; t''_3), & \blk(x'+1, x'') \sepc \hls{}(x'', t''_2; t''_3). \end{align*} %then $\varphi \models_\preceq \psi$ does not hold, since % Indeed, ... ...
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!