Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Mihaela SIGHIREANU
dp4sl4malloc
Commits
b71b8f52
Commit
b71b8f52
authored
Apr 26, 2021
by
Mihaela SIGHIREANU
Browse files
logic: slight changes
parent
af3ca9c5
Changes
2
Hide whitespace changes
Inline
Side-by-side
atva2021/logic-hls.tex
View file @
b71b8f52
...
...
@@ -20,7 +20,7 @@ and symbolic heaps $\varphi$ is given by the following grammar:
\begin
{
array
}{
l l l r
}
t
&
::
=
x
\mid
n
\mid
t
+
t
&
\ \ \
&
\mbox
{
terms
}
\\
\Pi
&
::
=
t
=
t
\mid
t
\ne
t
\mid
t
\leq
t
\mid
t < t
\mid
\Pi
\land
\Pi
&
\ \ \
&
\mbox
{
pure formulas
}
\Pi
&
::
=
\top
\mid
\bot
\mid
t
=
t
\mid
t
\ne
t
\mid
t
\leq
t
\mid
t < t
\mid
\Pi
\land
\Pi
&
\ \ \
&
\mbox
{
pure formulas
}
\\
\Sigma
&
::
=
\emp
\mid
t
\pto
t
\mid
\blk
(
t, t
)
\mid
\hls
{}
(
t, t; t
^
\infty
)
\mid
\Sigma
\sepc
\Sigma
&
\ \ \
&
\mbox
{
spatial formulas
}
\\
...
...
@@ -42,7 +42,7 @@ the rules in Equations~(\ref{eq:hlsv-emp}) and (\ref{eq:hlsv-rec}),
where
$
v
$
is a variable interpreted over
$
\NN\cup\{\infty\}
$
.
%Here we assume that $c \ge 2$ since $x \pto x'-x \sepc \blk(x+1,x')$ occurs in the body of Rule~(\ref{eq:hlsv-rec}).
An atom
$
\hls
{}
(
x,y;
\infty
)
$
is also written
$
\hls
{}
(
x,y
)
$
;
$
\top
$
and
$
\bot
$
are shorthands for
$
x
=
x
$
and
$
x
\ne
x
$
atoms..
%
$\top$ and $\bot$ are shorthands for $x=x$ and $x\ne x$ atoms..
Whenever one of
$
\Pi
$
or
$
\Sigma
$
is empty, we omit the colon.
We write
$
\fv
(
\varphi
)
$
for the set of free variables occurring in
$
\varphi
$
.
If
$
\varphi
=
\exists\vec
{
z
}
\cdot\Pi
:
\Sigma
$
,
...
...
@@ -92,6 +92,7 @@ The satisfaction relation $s,h\models \varphi$,
where
$
s
$
is a stack,
$
h
$
a heap, and
$
\varphi
$
a
\slah\
formula,
is defined by:
% structural induction on $\varphi$ as follows:
\begin{itemize}
\item
$
s,h
\models
\top
$
always and never
$
s,h
\models
\bot
$
,
\item
$
s,h
\models
t
_
1
\sim
t
_
2
$
iff
$
s
(
t
_
1
)
\sim
s
(
t
_
2
)
$
, where
$
\sim\in\{
=
,
\ne
,
\le
,<
\}
$
,
%
...
...
@@ -138,7 +139,7 @@ $s,h \models \exists\vec{z}\cdot\Pi:\Sigma$ iff $\exists \vec{n}\in\NN^{|\vec{z
\end{definition}
%\vspace{-2mm}
We write
$
A
\models
B
$
for
$
A
$
and
$
B
$
sub-formula in
\slah\
to mean
We write
$
A
\models
B
$
for
$
A
$
and
$
B
$
(
sub-
)
formula in
\slah\
to mean
that
$
A
$
entails
$
B
$
, i.e., that for any model
$
(
s,h
)
$
such that
$
s,h
\models
A
$
then
$
s,h
\models
B
$
.
...
...
atva2021/overview.tex
View file @
b71b8f52
...
...
@@ -186,7 +186,7 @@ By conjoining the pure part of $\texttt{path}_{\texttt{4-9}}$ with
formulas
$
\texttt
{
pb
}^
\Sigma
_{
\texttt
{
4
-
9
}}$
and
$
\texttt
{
pb
}^
\sepc
_{
\texttt
{
4
-
9
}}$
,
we obtain an equi-satisfiable existentially quantified
{
\PbA
}
formula
whose satisfiability is NP-complete.
whose satisfiability is
a
NP-complete
problem
.
\smallskip
\noindent
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment